Factoring Multivariate Polynomials over Large Finite Fields
نویسندگان
چکیده
A simple probabilistic algorithm is presented to find the irreducible factors of a bivariate polynomial over a large finite field. For a polynomial f(x, y) over F of total degree n , our algorithm takes at most 4.89, 2 , n log n log q operations in F to factor f(x , y) completely. This improves a probabilistic factorization algorithm of von zur Gathen and Kaltofen, which takes 0(n log n log q) operations to factor f(x, y) completely over F . The algorithm can be easily generalized to factor multivariate polynomials over finite fields. We shall give two further applications of the idea involved in the algorithm. One is concerned with exponential sums; the other is related to permutational polynomials over finite fields (a conjecture of Chowla and Zassenhaus).
منابع مشابه
Factoring Multivariate Polynomials over Algebraic Number Fields
The algorithm for factoring polynomials over the integers by Wang and Rothschild is generalized to an algorithm for the irreducible factorization of multivariate polynomials over any given algebraic number field. The extended method makes use of recent ideas in factoring univariate polynomials over large finite fields due to Berlekamp and Zassenhaus. The procedure described has been implemented...
متن کاملFactoring Multivariate Polynomials over Algebraic Number Fields
The algorithm for factoring polynomials over the integers by Wang and Rothschild is generalized to an algorithm for the irreducible factorization of multivariate polynomials over any given algebraic number field. The extended method makes use of recent ideas in factoring univariate polynomials over large finite fields due to Berlekamp and Zassenhaus. The procedure described has been implemented...
متن کاملFactoring multivariate polynomials via partial differential equations
A new method is presented for factorization of bivariate polynomials over any field of characteristic zero or of relatively large characteristic. It is based on a simple partial differential equation that gives a system of linear equations. Like Berlekamp’s and Niederreiter’s algorithms for factoring univariate polynomials, the dimension of the solution space of the linear system is equal to th...
متن کاملA New Algorithm for Factoring Polynomials Over Finite Fields
We present a new probabilistic algorithm for factoring polynomials over finite fields.
متن کاملA Lecture on the Complexity of Factoring Polynomials over Global Fields
This paper provides an overview on existing algorithms for factoring polynomials over global fields with their complexity analysis from our experiments on the subject. It relies on our studies of the complexity of factoring parametric multivariate polynomials that is used for solving parametric polynomial systems in our PhD thesis. It is intended to be useful to two groups of people: those who ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010